Physical Insights

An independent scientist’s observations on society, technology, energy, science and the environment. “Modern science has been a voyage into the unknown, with a lesson in humility waiting at every stop. Many passengers would rather have stayed home.” – Carl Sagan

Posts Tagged ‘Garnaut review

Switching off Victoria?

with 5 comments

I was quite impressed with myself to discover, the other day, that everybody’s favourite opinionated newspaper columnist, Andrew Bolt, had linked to and cited one of my recent posts.

That’s probably responsible, at least in part, for the significant increase in traffic I’ve seen on this blog over the last week or so – and I’m grateful for that.

Sometimes Bolt is absolutely on the money – but not always.

Here’s a recent blog post of Bolt’s which is somewhat agreeable, but still gets on my nerves a little bit. It’s worth reading, anyhow.

It’s utterly unbelievable that the Rudd Government should be contemplating making bankrupt the stations that provide more than 90 per cent of Victoria’s power:

Yes – it is extremely worthwhile and important to close down the extremely polluting and greenhouse gas emissions intensive brown coal fired power stations that provide more than 90 percent of Victoria’s electrical energy. That does not mean making the energy companies bankrupt – we still need that energy, it just has to come from a different source.

However, I too would have a hard time believing that Rudd would or could actually make it happen.

Although careful to respect the Federal Government’s process, Victorian Energy Minister Peter Batchelor appears increasingly nervous in his public comments. Asked if one of the state’s brown coal generators will be forced to close prematurely, he said: “It depends on the nature of the emissions trading scheme (introduced).”

The purpose of a GHG emissions trading scheme is to mitigate anthropogenic greenhouse gas emissions from our industries. Its purpose is not to raise more government revenues or to create more paperwork – its purpose, its reason for existing, is to reduce industrial, anthropogenic emissions of carbon dioxide.

Therefore, if the “mud-burning” Latrobe Valley stations are not the very first things to close down under an emissions trading scheme, then clearly the scheme is not working.

If it’s one like Garnaut actually recommends – with no compensation to power stations for wiping billions off their value – the generators are cactus. And here is Kevin Rudd’s modus operandi writ large and destructive: process over purpose. What possible good could there be to cause such an economic catastrophe in this state?

But Rudd’s guru has a solution of the kind the Soviet Union would have suggested:

In his report, Professor Garnaut said $1 billion to $2 billion of the emissions trading scheme proceeds should be invested in clean coal technologies, matched dollar for dollar by the companies. If clean coal worked, he said, the Latrobe Valley would heave a “prosperous and expansive future”. If it didn’t, money from the scheme should be used to help retrain workers and to help the valley community survive the brave new world of zero emissions.

Hey, let the Government spend a couple of billion of taxpayers’ money, and another couple of billion of the bosses’, on a yet-to-be proved “solution” many experts say is pie in the sky. And then, $4 billion later, let’s give the unemployed some handouts.

Warning: These people now have their hands all over your jobs and paypackets.

Whilst I’m interested – and many others are interested – in seeing the coal fired plants closed down, that doesn’t mean that the electricity utilities are out of business – we still need the electricity, and we will continue to need the electricity.

Ideally, what we would see happening is the construction of new lower-emissions or zero-emissions electricity generators of an energy output comparable to the coal power plants, followed by the decommissioning of the coal-fired plants. [Of course, we don’t decommission the coal plants until after the new ones are online.]

The electricity utilities are still operating lower-emissions or zero-emissions generators, there are still people employed, and we’re still getting the energy needed to support developed civilisation. This is where we need to transition to, and where an emissions trading scheme – if it’s done right – might help us transition to.

I agree that investing many billions of dollars in CCS research and development, which is considered by many to be pie in the sky, is a grave mistake. Instead, we need to consider the energy generation technologies that are mature technologies that are available and proven right now, that can replace coal-fired power plants, generating energy at a comparable scale, for less GHG emissions.

Those options are large hydroelectricity, natural gas fired turbines, and nuclear fission.

In Australia, expanding the use of large hydroelectric installations above and beyond what we’ve already got is really not a practical proposition, so we’re left with two options that really could replace coal-fired generators in the Latrobe valley, under an emissions trading scheme – natural gas and nuclear energy. Certainly, what is absolutely not sensible at all is arbitrary, unfair and exceptional, scientifically unfounded legal prohibitions on the development of nuclear power plants by the energy companies who are willing to invest in zero-emissions replacement for coal, especially when their investments may be kick started by billions of dollars in the government’s ETS revenue, which clearly needs to be put back into these zero emissions or lower-emissions technologies.

If power plant operators wish to pursue either of these options, which will finally actually put a stop to the ever-expanding use of coal-fired generators, and finally put a real dent in GHG emissions, then they are to be wholeheartedly encouraged in doing so.

Obviously the nuclear energy option is completely superior to natural gas in terms of greenhouse gas emissions – however, in practical terms, one must grant that gas turbines are already in widespread use in Australia today, and they are more politically acceptable in some political circles than nuclear power – however that may change as concern over greenhouse gases, even at the somewhat reduced levels from natural gas generators, grows.

However, that said, given the importance of making real cuts in GHG emissions within the next 3-10 years, if the generators want to build combined-cycle natural gas turbines, technologies with which they’re more familiar, straight away, then they shouldn’t be discouraged. Natural gas could offer some benefit as a stopgap measure for last-ditch replacement for coal fired plants in the absence of nuclear power.


More on the Garnaut report.

with one comment

The next thing that gets on my nerves about the Garnaut report is its repeated emphasis – and optimism – on what are described as “near-zero emissions coal technologies”.

The success of near-zero emissions coal technologies will mean that new fossil fuel plant will continue to be coal, while Australia continues to gain as an exporter from the ongoing high global gas prices.”

“For Australia, the importance of reducing emissions from coal combustion is of large national importance.”

If this industry is to have a long-term future in a low-emissions economy, then it will have to be transformed to near-zero emissions, from source to end use, by the middle of this century. A range of technical, environmental and economic challenges must be addressed effectively to achieve this objective, in a time frame consistent with a global agreement on climate change and Australia’s own domestic commitment.

There is seemingly precious little discussion about the maturity of such technologies, how scalable they are, how far they are away from practical widespread use, the extent to which they actually mitigate carbon dioxide emissions, and how much these technologies will cost, and their economic competitveness, even under a GHG emissions trading scheme.

At its simplest, the challenge is to develop technologies that allow coal combustion with zero, or near-zero, carbon dioxide emissions while maintaining its relative competitive position as a fuel.

Those same forces of high capital costs, high world gas prices and relatively strong export coal prices will strongly favour retrofitted (post-combustion capture) coal plants with captive coal supplies and low-emissions profiles and ultimately, near zero emissions plants involving integrated coal drying and gasification technology.

This notion of “zero-emissions” or “near-zero-emissions” from coal is simply ridiculous and unfounded.

The IPCC Special Report on Carbon Capture and Storage reports that:

“Available technology captures about 85–95% of the CO2 processed in a capture plant. A power plant equipped with a CCS system (with access to geological or ocean storage) would need roughly 10–40% more energy than a plant of equivalent output without CCS, of which most is for capture and compression. For secure storage, the net result is that a power plant with CCS could reduce CO2 emissions to the atmosphere by approximately 80–90% compared to a plant without CCS.”

There’s an interesting paper here which provides a realistic analysis of the implementation of retrofitted CO2 capture for an existing pulverised coal power station.

This paper examines the retrofit of a 400 MWe pulverized-coal fired plant emitting 368 t/h of CO2 to enable CO2 capture while maintaining 400 MWe output, where 90% of the CO2 emitted from the coal plant is captured. To do so, the extra energy required for capturing CO2 was supplied by natural gas-fired gas turbines.

I’ve quoted the key points from the paper below. I’ve applied some minor editing and collation, but most of the material is straight from the paper cited.

Even when CO2 emitted from the gas turbines is not captured, the overall process still have some impact in reducing CO2 emissions, corresponding to an overall reduction in carbon dioxide output to the atmosphere of between 60-70%, with atmospheric CO2 emissions of between 110 and 138 t/h, compared to 368 t/h for the original coal combustion plant, at the cost of a natural gas requirement of about 1350 GJ/h.

When CO2 from the gas turbines is captured, the reduction in CO2 emission is between 68 and 77%, or CO2 emission to the atmosphere of 86-113 t/h. However, a considerably large amount of natural gas is required (around 3140 GJ/h), which is certainly not reasonable.

The total amount of natural gas required is between 3100 and 3300 GJ/h. To put this number into perspective, this amount of natural gas would generate about 460 MWe when used in a combined-cycle gas turbine plant without CO2 capture. The relative emissions are between 23% and 32% of the original coal power plant, which has a significant impact on the reduction of CO2 emissions.

In addition to the cost analysis, the future work will investigate other possibilities of integrating gas turbines into the coal power plant. The configuration presented in this paper represents one extreme, where all the electricity is generated from coal and the auxiliary power is generated from the gas turbine and natural gas boilers. Another extreme is to consider the classical view of producing all the auxiliary power from the coal plant, at the expense of decreasing the net electrical output. To compensate for the lost electrical output, a combined-cycle gas turbine with CO2 capture will be added. Combinations between these two extremes will also be investigated.

For a nameplate capacity of 400 MW, and a capacity factor which we may assume to be, say, 85%, carbon dioxide emissions of between 86 and 138 t/h correspond to emissions of between 253 to 406 grams of carbon dioxide per kWh generated.

The results from this study certainly paint a less optimistic assessment of the carbon dioxide emissions intensity of “clean coal” than the 80-90% reductions estimated by the IPCC.

That’s not clean coal. Much like the use of fossil fuel methane, it’s a bit cleaner, but it certainly isn’t clean.

Indeed, such levels of carbon dioxide emissions intensity are not much better than existing high efficiency combined-cycle natural gas fired gas turbine power plants. Given that the carbon dioxide emissions aren’t grossly worse, and given that gas turbine plants are already established, mature technology which is likely to remain far more economically competitive with this expensive, immature, unproven future technology, it is easy to envision that natural gas will be the main focus of the fossil fuel combustion energy industry over coming years, as opposed to the development of CCS technology, even where emissions trading is introduced.

The exception to this, of course, is where there is a vested interest in keeping the existing coal-fired power plants, and enormous coal-mining infrastructure, even if it is a less than sensible choice on many different levels. Natural gas turbines are of course, along with nuclear power, by far one of the biggest “threats” to the coal mining and coal-combustion electricity generation industry.

Additionally, that’s only considering greenhouse gas emissions from combustion at the power plant – without any consideration of whole-of-life-cycle analysis of coal mining and natural gas production – the enormous scale on which coal is mined, along with the fugitive emissions associated with the production and handling of natural gas, and so forth.

There is a large body of literature and knowledge of the whole-of-life-cycle analysis of energy intensity, environmental impact and greenhouse gas emissions associated with, for example, nuclear power, solar photovoltaics or wind power.

However, since fossil fuel combustion energy generation has such a comparatively fantastically high level of carbon dioxide emissions in the combustion process itself, I feel that sometimes it’s easy for some of us to forget that it’s only sensible to apply the same metrics across the life cycle for fossil fuels, just as people insist on analysis the impact of the entire life cycles for nuclear energy or solar energy, for example.

What is desperately needed is further research into the life cycle analysis of coal or other fossil-fuel combustion based energy generation systems when they are combined with proposed carbon capture and storage technologies. This is clearly important if a fair comparison is to be made between the economic and environmental feasibility of fossil-combustion CCS and alternatives such as nuclear power, wind, hydro or so forth.

Personally, I believe that as such analyses are performed, the extreme skepticism with which many of us view the comparative practicality of these “low-emissions” fossil fuel combustion technologies will begin to be vindicated.

The Garnaut climate change review draft report.

leave a comment »

As many of you will know, Professor Garnaut’s much-awaited Draft Report on the implications of anthropogenic climate change in Australia was recently released. Let’s take a look at it.

[There’s a mirrored host here, courtesy of the GreensBlog. Please be aware that that’s a direct link to a very large PDF file.]

I haven’t read the entire thing yet, and I don’t expect that many of you have, either.

In some industries, notably aluminium smelting and some steel production, indirect emissions in generating electricity would need to be taken into account. These emissions could be assessed according to a simple and robust approximation, based on the emissions intensity of the systems from which they draw their power, and made subject to the sectoral emissions tax. Indirect or embodied emissions that fell below a threshold would not be considered, in the interest of simplicity.”

“Chapter 9 suggested that under a reasonable set of assumptions about the threshold ratio and the permit price, only a limited number of industries might clearly satisfy the emissions intensity eligibility criteria. As the permit price rises, they may include — assuming an economy-wide emissions trading scheme — aluminium smelting, cattle and sheep products, cement production, and iron and early stage steel manufacturing.”

It all sounds terribly complicated, doesn’t it? I’ll be the first to profess that I’m not an economist, however.

The example of the aluminium production industry is one that gets bought up again and again in the context of high-GHG-emissions industries, and it raises an interesting question.

An aluminium smelter itself does emit a little bit of carbon dioxide and other GHGs, but not all that much by comparison to most other large industrial chemical and metallurgical engineering.

What an aluminium smelter does do, however, is consume large amounts of electrical energy, and this is where this notion about the aluminium industry being responsible for vast amounts of GHG emissions comes from.

The aluminium producer buys their electricity from the grid from the electricity generating utility. If we assume that this utility is predominantly operating coal-fired plants, then the utility is paying a high price for its large carbon dioxide emissions, under an emissions trading scheme.

The utility will inevitably pass this cost onto electricity consumers – so, is an industry such as the aluminium industry or steel industry being expected to pay for the carbon dioxide intensity of their energy use twice – once in the price of their electricity, and again simply because they’re using that electricity? That’s what the above passage seems to imply, doesn’t it?

The same scenario applies to every one of us, with regards to household electricity consumption. Could you reasonably be expected to pay for “your” carbon dioxide emissions corresponding, even after you’ve already paid them in the form of the bill from your electric utility?

Just like aluminium smelters or electric arc furnaces in industry, light bulbs or plasma TV’s aren’t responsible for significant direct greenhouse gas emissions – it’s fossil fuel combustion power stations that are.

Now, I’m pleased to note that there’s at least some mention of nuclear energy in the report, and it’s interesting to take a look at that, too.

This renewed demand arises from a combination of influences from climate change, energy security and relative costs. With more than one-third of currently estimated global uranium resources, Australia is well placed to benefit from this growth.

Doesn’t this sound – coincidentally – very much like the “Nuclear energy is fantastic for Australia – just as long as it isn’t actually in Australia” policy of the federal government?

The 2006 Uranium Mining, Processing and Nuclear Energy Review for the Commonwealth Government concluded: ‘Although the priority for Australia will continue to be to reduce carbon dioxide emissions from coal and gas, the Review sees nuclear power as a practical option for part of Australia’s electricity production. This conclusion was based on a cost of nuclear power of $40–65/MWh, which is within the range of the $35–80/MWh estimate of the Nuclear Energy Agency and the International Energy Agency from 2005, but below ranges specified in the more recent official UK publications of $60–80 MWh. Nuclear power stations will have been disproportionately affected by the recent increases in capital costs on account of their exceptional capital intensity, and will have been rendered less competitive by this development. Newer-generation nuclear technologies indicate potentially lower costs.

Less competitive with what? Less competitive in the presence or in the absence of an emissions trading scheme? How less competitive?

Increases in capital costs affect all energy systems – nuclear energy, fossil fuel combustion, solar, wind… you name it. In terms of the relative sensitivity to capital costs of nuclear power plant construction for a given amount of energy generated, nuclear energy is indeed quite competitive.

“Australia has better non-nuclear low-emissions options than other developed countries, especially (but not only) if carbon capture and storage is commercialised within the range of current cost expectations. Australia is a major net exporter of a wide range of energy sources, notably coal, liquefied natural gas and uranium. Transport economics should favour local use of those fuels in which the gap between export parity and import parity price is greatest (first liquefied natural gas, then coal). As a consequence, Australia is not the logical first home of new nuclear capacity on economic grounds.”

This sounds like the oft-encountered yet worrisome “fossil fuel combustion is the cheapest source of energy – so just use that instead, without bothering with those more expensive sustainable low or no emissions alternatives” reasoning.

Is that perhaps what we have to expect when we put economists in charge of preparing a review for the government of the impacts of anthropogenic greenhouse effect forcing in Australia?

Without real attention paid to the environmental impacts of fossil fuel combustion, the health impacts, and the energy security impacts, no energy system is competitive with cheap, abundant coal and petroleum on economic grounds.

“In Australia, as well as in most other developed and developing countries, public acceptability is an important barrier, that would need to be recognised as a constraint and a source of delays and increased costs by any government committed to implementation of a nuclear power program.”

“Given the economic issues and community disquiet about establishing a domestic nuclear power capacity, Australia would be best served by continuing to export its uranium and focusing on low-emissions coal, gas and renewable options for domestic energy supply. However, it would be wise to reconsider the constraints if:

• future nuclear costs come in at the low end of the estimates provided above
• developments in technologies reduce the need for long-term storage of high level radioactive waste
• there is disappointment with technical and commercial progress with low emissions fossil fuel technologies, and
• community disquiet eases.”

Many who support nuclear power already believe that the failure of fossil fuel combustion with CCS technology to deliver truly competitive and truly low-emissions energy is a foregone conclusion for the next several decades at least.

As for dealing with used nuclear fuel and high level radioactive waste efficiently, sensibly and safely, the efficient recycling of nuclear fuels and the deep geological permanent disposal of unusable long-lived radioactive wastes are already scientifically and technologically solved problems – only political debate remains as the “unsolved problem”

Ongoing developments in the design and construction of Generation III, III+ and IV are working to address concerns over the economics of nuclear power, as do rising natural gas and fossil fuel prices. The introduction of GHG emissions trading schemes increases the economic acceptability of nuclear energy still further, relative to other energy systems. It is always essential to approach these issues in the context of meaningful comparisons to other forms of energy generation – or realistic degrees of reduction in demand, or the slowing of demand growth. The energy, ultimately, has to come from somewhere.

This leaves public acceptance of nuclear power – supposedly – as the overwhelming issue preventing nuclear energy use within Australia.

Does this supposed community disquiet truly exist to a significant degree, or is it merely the meaningless noise of a vocal, fervent and dogmatic minority?

Acceptance of nuclear energy amongst the public may be swayed by dramatically increased energy costs, and failures to achieve desired reductions in GHG emissions, if real alternatives to coal and fossil fuels are not deployed in a meaningful way.

The 2007 McNair Gallup poll found 53% of Australians were opposed, 41% were in favour of the construction of Nuclear power plants and 6% were uncommitted.

It seems from the 2007 McNair Gallup poll that the need to consider nuclear power as an alternative energy source is considered increasingly popular amongst Australians, with more Australians conceding the need for nuclear power plants to be built in Australia.

The 2007 results contradict Peter Garrett’s claim that “Australians are very clear that they don’t want nuclear energy and nuclear power in this country.”, with 41% of Australians in favour for the construction of nuclear power plants.

Other informal polls, such as those run on the websites of Australia’s major newspapers every once in a while, continually return strong majority support for nuclear power. Some may question the reliability and coverage of such polls – but it is clear that as concern over anthropogenic greenhouse forcing and the use of coal grows, along with concerns of the economic impacts of GHG emissions trading and the need for large scale energy generation also grows, more effort needs to be made to gauge the true degree of community support for a rational, informed and sensible consideration of nuclear energy – along with greater education of the public, which is increasingly desired by the community.

In fact, I am not unconvinced that there is not already majority support for a rational, informed, dogma-free and sensible consideration of nuclear energy amongst the Australian public today.