Archive for the ‘politics’ Category
Burning money with solar power in Victoria. Again.
It has been announced this week that the Victorian Government will promote renewable energy by spending $100 million to establish a new regional solar power station, subject to the Federal Government matching its commitment.
Premier John Brumby will announce both initiatives today, focusing on the plan for a 330-gigawatt hours per year solar plant with the capacity to power the equivalent of 50,000 homes.
All right. More kumbaya and rainbows and sunshine courtesy of Brumby.
This proposed new solar power station will supposedly generate 330 gigawatt-hours of electrical energy per year. (The Age article originally mentioned a “330 gigawatt” plant, but they later caught the egregious mistake and edited it.)
How much energy is that?
In 2006, Loy Yang unit A in Victoria generated 15,995 GWh of electrical energy, sent to the grid.
(In doing so, it emitted 19,314,994 tonnes of CO2 equivalent, and a whole lot of other environmentally and aetiologically nasty, dangerous, toxic waste, such as fly ash, SO2 and NO2, as well.) That’s just one example of one of the coal-fired generators, of course.
Therefore, this proposed solar power station is generating about 1.88 percent of that one single coal-fired generating station.
How much will this plant cost? We don’t know. The article doesn’t say, nor does Brumby’s original press release. We don’t know how much it costs, and I doubt Brumby knows, either.
…promote renewable energy by spending $100 million to establish a new regional solar power station, subject to the Federal Government matching its commitment.
OK… we know that it costs at least $200 million. There is actually a convenient benchmark which we can use to make an estimate of how much the whole project will actually cost, and that is the $420 million solar energy installation planned by Solar Systems for northwestern Victoria. This is another expensive solar energy project that the Victorian government just loves to talk about as a poster child for their clean, green ways.
The Solar Systems project, with 154 MW of nameplate capacity, will generate 270 GWh per annum, and will cost 420 million dollars. If we assume that the newly proposed 330 GWh/annum installation might cost about the same, for a given amount of capacity, then we can expect that it will cost 513 million dollars.
To replace Loy Yang A, to have the equivalent amount of energy generation, you’d need 49 such installations of this size, at a cost of approximately 25 billion dollars to construct.
If you build a modern* nuclear power plant, with two 1100 MWe reactors operating with a 90% capacity factor, the plant will generate about 17,356 GWh per annum. That is, such a plant will replace Loy Yang A’s output about 1.09 times over; it’s more than sufficient.
How much does it cost, to build such a nuclear power plant?
Go on, consider an exaggerated, extra-conservative cost estimate from your local greenies. 9 billion dollars? 12 billion? 14 billion? 15 billion?
In every case, even with the most pessimistic cost estimates for nuclear power, it’s far, far cheaper than solar, assuming that you’re actually capable of counting kilowatt-hours.
(* Modern, but not bleeding edge. We’ll consider the presently available modern Generation III LWRs such as Westinghouse AP1000 that are available immediately, not Generation IV fast spectrum reactors, liquid fluoride reactors, or things like that, just to be a little conservative about it.)
Brumby’s press release says that they aim to have the plant operating by 2015. So, they aim to have the plant operating within six years.
Six years? To think that opponents of nuclear energy say that it takes too long to deploy.
If it takes six years to build, and you need 49 of them to replace one coal-fired station, well, would it take 294 years for them to accomplish that goal? Well, perhaps I’m being a tiny bit mendacious. You never know, perhaps they could achieve faster deployment constructing them in parallel, and maybe it would only take 200 years, or 150 years. Maybe.
Six years is in fact sufficient time to construct a nuclear power plant, if you’re serious about doing it and don’t allow it to be delayed. All the nuclear units at the Kashiwazaki-Kariwa nuclear generating station in Japan were each constructed in timescales of between three and five years; Kashiwazaki-Kariwa Unit 2 and Unit 5 both commenced construction in 1985, and both were completed by the end of 1990, within 5 years. Obviously the Japanese operators failed to see any relevance what so ever of a certain ill-fated Soviet graphite pile to their operations.
Even if you want to talk about conservative, drawn out timescales for the construction of new nuclear power in Australia, say, 10 years maybe, it’s still a far, far faster option, for a given amount of energy delivered, than solar or wind.
Nuclear power and terrorist proliferation of nuclear weapons
Is the plutonium that is potentially formed within certain types of fuels in nuclear fission power reactors really suitable for the construction of nuclear weapons? How accessible and usable is such plutonium for such a purpose? How hard would it be to construct a nuclear weapon employing such material? Could terrorists steal nuclear fuel from a nuclear power reactor and construct a working nuclear explosive device, practice?
What characteristics would such a device have? Given the terrible power of nuclear weapons, and the very real threat of terrorists who would love nothing more than to wield such power, these are perhaps important questions to consider.
I assert that, no, there is no real threat here that is anywhere near as plausible in the real world as it is sometimes beaten up to be. Can terrorists steal nuclear fuel, and build a nuclear weapon? No. I don’t think so.
I mainly just wrote this because (i) I just wanted to get this off my chest, and it’s good to have a go at the unrealistic nonsense that gets bandied about without any real factual evidence to back it up, and (ii) because I found the Kessler paper interesting.
This little piece of writing of mine owes a lot to the always entertaining and scientifically interesting posts of NNadir, especially this one, and this one, where I was pointed to the interesting publications of Kessler and colleagues. Love your work, NNadir 🙂
My little essay is here (PDF format).
Pointing out of typos, peer review, comments, grammatical suggestions and other interesting discussion and feedback is appreciated.
(I know the sentence is too long in the last paragraph on page 5, and there’s a typo on the first line of page 13. Those are fixed in the CVS. 🙂 )
I hope you find it enjoyable, interesting and/or useful.
The Australian Government’s domestic solar PV subsidy…
The federal government has recently announced it will scrap the unpopular means test for the federal subsidy for domestic solar PV arrays, which restricted the rebate to households earning less than $100,000.
The size of the rebate was, formerly, $8 per watt of installed nameplate capacity, up to a maximum of $8000. The rebate will now be smaller; $5/W, up to a maximum of $7500.
Sounds good, right? But it’s horrendously expensive – the government is in effect paying $5/W for the cheapest, nastiest polycrystalline silicon PVs on the market.
There are scores of companies jumping on the bandwagon to sell these little 1-1.5 kW rooftop PV systems, advertising and promoting and installing them – because they’re making a fortune from the increase in business resulting from the subsidy.
The government rebate does not cover the full cost of such a system – therefore, in order to get as much interest as possible, the vendors are trying to keep the costs of such systems as low as absolutely possible, so that the cost that the customer pays is as small as possible. Therefore, all such systems are exclusively cheap, inefficient, basic polysilicon devices. After all, an advanced solar-concentrating collector with a high-efficiency CdTe cell or stacked heterojunction cell or sliver cell or whatever does not attract any higher subsidy than the basic polycrystalline Si device.
Advocates such as the Australian Greens say that such a scheme “supports the solar industry” – but all it does is supports the environmentally-damaging low-cost manufacturing of polycrystalline silicon in China, and doesn’t support innovation in advanced PV technology or anything like that.
What if the same amount of subsidy might be better spent elsewhere? Here’s a hypothetical idea to think about.
1. Go and find a suburb or a city or a community which has about 31,000 households. I’m certain there are 31,000 households in this country who support what I’m about to elucidate.
2. Get each household to put up AUD $1200 or so, temporarily.
3. Take that 25 million US dollars and purchase a 25 MWe Hyperion Power Module, or something similar.
4. At 25 MWe divided between 31,000 households, that’s a little over 25 GJ per year, which is a little more than Australia’s present average household electricity consumption. This doesn’t just generate a fraction of your household electricity needs – it generates 100% of it, and there will be no more electricity bills.
5. That corresponds to a nameplate capacity of 807 watts per household. Since the government hands out a subsidy of $5/W for solar photovoltaics with a 20% capacity factor, they should hand out $22.50/W for nuclear energy with a 90% capacity factor, right?
6. Collect your $18,157.50 rebate from the government. Less the $1200 investment, that’s $16,957.50 immediate profit in your pocket. This is exactly the same rate of payment per energy produced that presently exists in the form of the PV subsidy.
7. Go to the pub. Got to stimulate that economy, you know.
I wonder how many ordinary Australian households would support nuclear energy if you paid them $17,000 for doing so?
To replace one Loy Yang type coal-fired power station* with solar cells, we would need 6,082,342 homes equipped with 1.5 kW solar photovoltaic arrays.
With an $7500 rebate for each one, that would cost the government 45.6 billion dollars per each large coal-fired power station.
* (Loy Yang generated 15,995 GWh in 2006.)
Solar photovoltaics typically have a capacity factor of about 20%, and we’ll suppose the panels have a lifetime of, say, 30 years.
Therefore, this scheme costs the government 9.5 cents per kWh generated.
If the government purchases nuclear power plants, they will cost, say, 10 billion dollars (let’s be conservative) for a nuclear power plant with two 1100 MW nuclear power reactors which will operate with a 90% capacity factor and a lifetime of 50 years. The capital cost of plant dominates the overall cost of nuclear energy.
Therefore, the nuclear power plants would cost the government 1.15 cents per kWh – 12% percent of the cost of the solar rebate scheme. That’s the government’s rebate alone – without the rest of the price of these systems.
All this solar rebate is is another mendacious political enterprise involving renewable energy which can’t be scaled up, which hands out free money to the public, makes a bunch of money for the solar panel vendors (including many dangerous fossil fuel vendors such as British Petroleum), and mendaciously makes the government look like they’re actively getting the country running on clean energy.
ASIDE: I’m going to start cross-posting some blog content on the Daily Kos. I think it’s a nice site to engage with many, many readers – many of whom perhaps aren’t already so convinced of the virtue of nuclear energy – so, there’s plenty of engaging, active discussion, and the opportunity to maybe convince some people – even if that’s just a few people it’s still a very positive thing.
Thought for the day.
Of all the G20 nations, there are only a few without nuclear power. There is only one nation among the G20 which has no nuclear power reactors, and has no active interest in implementing them.
“Nuclear Power Will Kill the Coal Industry”
Many reader’s will be familiar with Australia’s Construction, Forestry, Mining and Energy Union (CFMEU) and their now-slightly-infamous “nuclear energy threatens coal jobs!” position.
But could nuclear power really “kill the coal industry” in Australia? I don’t think so.
Total production of raw black coal in Australia in 2006 was 405 Mt (million tonnes). This production represented a small increase of 1.6% over the 2005 figure of 399 Mt. After processing, a total of 317 Mt of metallurgical and thermal black coal were available for both domestic use and export in 2006.
(I’ve taken these statistics from the Australian Coal Association website.)
In 2006, Australia’s domestic consumption of black coal for electricity generation amounted to 62.4 million tonnes of black coal. Hence, domestic electricity generators consume only about 20% of Australia’s output of processed black coal. Other domestic industrial uses of coal, such as steel production, account for about three percent, with the entire remaining 77% being exported.
(The ACA’s statistics refer exclusively to black coal – however, brown coal is a much smaller resource, relatively, and since we have the statistics for black coal, I’ll limit the discussion to black coal.)
Hence, under the worst case scenario (or best case scenario), we may envisage a future in which every coal-fired generator in Australia is closed down and replaced by nuclear power plants. This would result in cutting Australia’s greenhouse gas emissions in half – at the cost of a 20% reduction in coal demand. If we were to see half of Australia’s coal fired plants closed down and replaced by nuclear energy, we will see a 10% reduction in coal revenue.
I don’t think a 10% to 20% downturn in revenue constitutes “killing the coal industry” – and I really don’t think that the coal industry has anything to worry about for the foreseeable future.