Physical Insights

An independent scientist’s observations on society, technology, energy, science and the environment. “Modern science has been a voyage into the unknown, with a lesson in humility waiting at every stop. Many passengers would rather have stayed home.” – Carl Sagan

Archive for the ‘nuclear energy’ Category

ScienceDebate 2008: Presidential candidate’s answers to the science questions facing America

leave a comment »

The presidential candidates provide their responses to the most important science questions facing the United States.

Unfortunately, they have not yet posted Senator McCain’s responses yet, hopefully they do so at some point in the near future. So, at the moment, all they’re really presenting are Obama’s responses to the questions. It still makes for interesting reading, though.

Interestingly, although not specifically asked about nuclear energy at all, Obama specifically mentions “A new generation of nuclear electric technologies” as one of his policy goals. Such bipartisan support, even to a slight degree, is a promising sign.

Written by Luke Weston

September 5, 2008 at 9:07 am

“Nuclear Power Will Kill the Coal Industry”

with 3 comments

Many reader’s will be familiar with Australia’s Construction, Forestry, Mining and Energy Union (CFMEU) and their now-slightly-infamous “nuclear energy threatens coal jobs!” position.

But could nuclear power really “kill the coal industry” in Australia? I don’t think so.

Total production of raw black coal in Australia in 2006 was 405 Mt (million tonnes). This production represented a small increase of 1.6% over the 2005 figure of 399 Mt. After processing, a total of 317 Mt of metallurgical and thermal black coal were available for both domestic use and export in 2006.
(I’ve taken these statistics from the Australian Coal Association website.)

In 2006, Australia’s domestic consumption of black coal for electricity generation amounted to 62.4 million tonnes of black coal. Hence, domestic electricity generators consume only about 20% of Australia’s output of processed black coal. Other domestic industrial uses of coal, such as steel production, account for about three percent, with the entire remaining 77% being exported.

(The ACA’s statistics refer exclusively to black coal – however, brown coal is a much smaller resource, relatively, and since we have the statistics for black coal, I’ll limit the discussion to black coal.)

Hence, under the worst case scenario (or best case scenario), we may envisage a future in which every coal-fired generator in Australia is closed down and replaced by nuclear power plants. This would result in cutting Australia’s greenhouse gas emissions in half – at the cost of a 20% reduction in coal demand. If we were to see half of Australia’s coal fired plants closed down and replaced by nuclear energy, we will see a 10% reduction in coal revenue.

I don’t think a 10% to 20% downturn in revenue constitutes “killing the coal industry” – and I really don’t think that the coal industry has anything to worry about for the foreseeable future.

Written by Luke Weston

August 31, 2008 at 8:48 am

Embarrassingly predictable?

with 2 comments

Here’s a powerpoint presentation from an excellent presentation given by Kirk Sorensen about the use of thorium as a nuclear energy resource.

Of course, the Powerpoint slides themselves are not as good as the whole presentation, and in and of themselves they can be a little hard to follow, without the presenter, but unfortunately you have to deal with that with any presentation where you’ve only had a chance to pick up the slides after the fact.

This presentation was prepared over a year ago – but I was only reading it last week. As for the title of this post – there was something, on a related note, that I found a little amusing.

Check out the 6th slide, in Kirk Sorensen’s presentation, and compare it to the oh-so-factual and educational graphics used in Joseph Romm’s recent post on GristMill. Isn’t it uncanny – just when you thought that nobody trying to construct a coherent (?) argument of some kind against the use of nuclear energy could actually be that silly.

Joe Romm has got another post up recently that’s worth looking at as well, in which he attempts to reinforce the notion that the linear-non-threshold hypothesis is somehow factually motivated, and that every little contribution to low doses of ionising radiation is dangerous. I’m sure some readers will be interested in going and leaving a comment in response to that.

Still, Romm deserves some credit for correctly pointing out that on the grounds of ionising radiation dose, as well as numerous other ecological and health impacts, coal-fired electricity generators are far more dangerous than nuclear power plants.

Also, in one final note, congratulations to Rod Adams on the momumental 100th episode of The Atomic Show podcast. That’s a monumental effort, producing 100 episodes of interesting, unique high-quality podcasting, interviews and commentary, and I look forward to the next 100 episodes to come.

Australian support for consideration of nuclear energy continues to grow.

with 3 comments

Paul Howes, national secretary of the Australian Workers’ Union, is continuing to advocate taking a reasonable look at the role of nuclear energy as a means to achieve anthropogenic GHG emissions reductions. As you might expect from Australia’s largest trade union, their chief area of concern is the mitigation of GHG emissions, and the introduction of GHG emissions trading, without damage to Australian industries and industrial employment.

THE Rudd Government is being urged to embrace nuclear power as a source of clean energy, amid warnings its emissions trading scheme could result in desolating Australian mineral and metallurgy industries.

Just days before the Government releases a discussion paper on carbon trading, a new report shows Australia’s aluminium industry – employing 35,000 people – could be devastated.

Challenging Professor Ross Garnaut’s preferred model, the Australian Workers’ Union wants the key metals sector to receive a partial reprieve from carbon trading.

The union has a powerful ally: respected business figure and Commonwealth Bank chairman John Schubert.

Mr Schubert, who also chairs the Great Barrier Reef Foundation, says Canberra should “definitely look at” nuclear power.

It needs to be a real option… should absolutely be on the table“, Mr Schubert said.

Howes has just released a report from Per Capita consulting on the effects of the emissions trading scheme on Australian industry – specifically the aluminium industry, in this case.

It says the future for the aluminium industry is grim if the Government gets the design of an ETS wrong.

Union and business leaders fear an ETS will cause job losses and send investment offshore, with the aluminium industry particularly vulnerable.

The Per Capita report says jobs could be lost to Brazil, China and India if Canberra imposes tough new laws.

The study recommends the Government give the aluminium industry a “partial exemption” from carbon trading for up to five years and embrace nuclear power.

Mr Howes said the report would bring a “bit of level-headedness” to the debate over emissions trading and climate change.

Mr Howes said he was sick of hearing claims that workers in “heavy-polluting” industries, such as steel and aluminium, could be re-trained in “green” industries.

Instead, workers could be “left on the scrapheap of history” and enter the ranks of the long-term unemployed, Howes claims.

Personally, I don’t agree with the popular conception that aluminium production is an especially highly GHG emissions intensive industry.

Direct GHG emissions intensity for aluminium production in Australia was 2.0 tonnes CO2-e per tonne of aluminium production in 2007 — down from 2.1 in 2006 and 5.0 in 1990 — an improvement over the 1990 level of 60 per cent.

Indirect GHG emissions intensity from electricity consumption for aluminium production remained at the same level as 2006 at 14.1 tonnes CO2-e per tonne of aluminium production — down from 16.1 in 1990 — an improvement of 12%. This reflects both energy efficiency and changes in greenhouse grid factors.

Australian aluminium production in 2007 (i.e. aluminium smelting, not alumina production) contributed 31.6 mt (million tonnes) of GHG emissions (CO2-e), comprising 3.95 mt CO2-e of direct PFC emissions, direct carbon dioxide process emissions and other site-level emissions, and 27.69 mt CO2-e of indirect emissions from electricity consumption.

The Australian aluminium smelting industry consumed 29,500 GWh of electricity in 2007, corresponding to an average GHG emissions intensity of 939 g/kWhe for the electricity consumed by Australia’s aluminium smelters – consistent with Australia’s extremely GHG intensive, overwhelmingly coal based electricity generation capacity.

[These statistics are taken from the Australian Aluminium Council’s 2007 Sustainability Report.]

Indirect GHG emissions from fossil fuel electricity generation – which aren’t really emissions from the aluminium production industry at all – hence comprise 88 percent of the GHG emissions intensity ascribed to the aluminium smelting industry.

If the overall GHG emissions intensity of the electricity supply of 939 g/kWhe was cut to, say, 100 g/kWhe through the replacement of coal fired generators with nuclear energy, geothermal, solar thermal, hydroelectricity or what have you, then the greenhouse gas emissions of aluminium production in Australia can be cut from 31.6 mt to 6.9 mt – 3.52 tonnes CO2-e per tonne Al, compared with 16.1 tonnes CO2-e per tonne Al at present – a 78% reduction in greenhouse gas emissions intensity, and that’s on top of any further improvement in energy efficiency and/or process efficiency, PFC emissions reduction and so forth, in the industry.

Aluminium smelters are not at all the cause for concern here. The burning of coal and fossil fuel for essentially all the country’s electricity generation is by far the foremost concern that we need to address.

The AWU’s press release, and the 32 page analysis commissioned by the AWU from Per Capita, are available here.

Also, in Canberra today, economist Professor Jeffrey Sachs warns that the world must embrace nuclear power as one of its options if it is going to win the fight against the potentially catastrophic damage of anthropogenic greenhouse effect forcing.

Professor Sachs, director of the Earth Institute at Columbia University and author of the book The End of Poverty, warned that global warming had the potential to undo the progress being made in the war on global poverty, making the tropics hotter and arid regions even more arid.

In Canberra to give a keynote speech today at the Australian National University’s annual China Update, he said the world would need to use every available technology – and develop some more – to reduce anthropogenic greenhouse forcing at the same time as rapidly expanding its output.

Professor Sachs, who has not supported nuclear power in the past, said better technology was the key to breaking the link between economic growth and carbon dioxide emissions, and the world could not afford to do without either nuclear power or cleaner coal.

“I support the reintroduction of nuclear power”, he said. “It’s hard to see how we’re going to get enough energy with low carbon emissions without nuclear playing a significant role.

If Australia chooses not to go that way, it’s going to have to go even more aggressively towards solar energy and carbon capture and storage. My own feeling is that nuclear is safe and cost-effective.

Professor Sachs, 52, played a key role in drawing up the Millennium Development Goals that are the targets for reducing global poverty.

Yesterday he said climate change was one cause of the steep rise in world food prices, which is making food unaffordable in some poorer areas.

If the world can not afford to do without either nuclear power or “cleaner coal”, and nuclear power is already a developed, mature, proven technology across the world, and “cleaner coal” is far from it, then it’s not much of a contest, is it?

Written by Luke Weston

July 14, 2008 at 5:12 pm

Anthropogenic GHG emissions in the developing economic powers.

with 2 comments

In the discussion of anthropogenic greenhouse forcing and the international political efforts to respond to it, there isn’t much of an opportunity for discussion before somebody brings up the issue of the rising economic powers like India and China. I agree that there is a very large base of emissions in China and other developing economies – they’re building the equivalent of one large power plant every 10 days or whatever it is, but they’re building all the nuclear power and hydro that they can as part of that – but if they need coal fired plants as well in this early stage of their industrialisation, then they will build those, too.

Considering that energy consumption in most developed countries has usually grown faster than GDP during the early stages of industrialization, it is to China’s credit that although its GDP has grown by 9.5% per year over the last 27 years, their carbon intensity per unit of GDP has decreased during that time, rather than increasing along with the GDP. The reduction in carbon intensity for China has meant that its CO2 increase of about 5.4% per year has amounted to a little over half of its GDP increase during the same 27 years. [1] They’re doing a far better job than was done in the industrialisation of the Western societies.

Only one seventh of the population of China has access to constant reliable electricity. Are we to stop those Chinese having that access to electricity? They want to have a prosperous, developed, first-world standard of technologically developed society for all the Chinese people – who the hell are we to say that they shouldn’t, or can’t?

They want to have the same opportunity for industrialisation that the West has had – even if that means pollution first, and clean up later, exactly like it was done in the Western societies.

If the Australian government[s] were in charge of China, you can be sure they’d be doing a far worse job in managing the rate of increase greenhouse gas emissions whilst allowing economic development.

In discussions of the politics of responding to anthropogenic greenhouse forcing in the Western world, you’ll often hear the “Blame China – it’s all their fault, not ours!” position. So, what to do?

Is the anthropogenic forcing of climate change such a pressing, important issue that suppose we’re going to tell the Chinese, no, you’re not allowed to industrialize right now – maybe in 50 years or 100 years when everyone else has slashed their CO2 emissions? You’re joking, clearly – what are you going to do, go to war to stop them from having the same standard of living that we have?

Or, perhaps, we can give them as much aid as possible to build clean alternatives to coal fired power plants while they’re industrialising?

Chinese officials claim that they are doing a great deal that is often not visible, especially for a country as large, populous, and rurally undeveloped as it is.

But working against that, and equally non-visible, is the role of multinational ventures in China in contributing to its greenhouse gas emissions. As of 2004, 23% of China’s CO2 emissions were coming from China’s manufacturing of products destined for the West, providing an interesting perspective on China’s large trade surplus. [1]

Over half of those emissions driven by demand from the West are from multinationals and foreign owned factories in China, suppling all the crap that is destined for Wal-Mart and department store shelves in Australia, the US, and other western nations. It is pointed out that China is being demonised for having become the place where the western world effectively outsources much of its pollution.

Do we have a responsibility to deal with this in China, instead of just blaming them and refusing to do anything ourselves since they’re supposedly the problem?

We could fully encourage and support the export of all nuclear power, wind turbine, solar, hydro, etc technologies from the Western nations into China – and, given the seriousness with which anthropogenic greenhouse forcing is viewed as a grave issue, give them as much direct financial aid as we can to build these technologies as an alternative to new coal fired power plants.

Instead of, say, building a nuclear power plant in Australia, Germany, Italy, the US or UK or where ever to replace a coal fired power plant, what if we could just give the money to China and they will build them instead of coal plants – talk about an emissions trading scheme! That way, we’re making the same mitigation of greenhouse gas emissions, we’ve silenced the “It’s all China’s fault, not our problem” talk, and we’ve also dealt with the political bickering in Australia (and a few other Western countries) over acceptance of nuclear power.

(Of course, this is a little hard to reconcile with the usual Western approach where power plants, nuclear, fossil or otherwise, are built and operated by corporations who can sell their electricity for profit – it really only makes sense in the context of nations operating under state ownership of power plants, like, say France.)


Written by Luke Weston

July 10, 2008 at 11:30 am

Switching off Victoria?

with 5 comments

I was quite impressed with myself to discover, the other day, that everybody’s favourite opinionated newspaper columnist, Andrew Bolt, had linked to and cited one of my recent posts.

That’s probably responsible, at least in part, for the significant increase in traffic I’ve seen on this blog over the last week or so – and I’m grateful for that.

Sometimes Bolt is absolutely on the money – but not always.

Here’s a recent blog post of Bolt’s which is somewhat agreeable, but still gets on my nerves a little bit. It’s worth reading, anyhow.

It’s utterly unbelievable that the Rudd Government should be contemplating making bankrupt the stations that provide more than 90 per cent of Victoria’s power:

Yes – it is extremely worthwhile and important to close down the extremely polluting and greenhouse gas emissions intensive brown coal fired power stations that provide more than 90 percent of Victoria’s electrical energy. That does not mean making the energy companies bankrupt – we still need that energy, it just has to come from a different source.

However, I too would have a hard time believing that Rudd would or could actually make it happen.

Although careful to respect the Federal Government’s process, Victorian Energy Minister Peter Batchelor appears increasingly nervous in his public comments. Asked if one of the state’s brown coal generators will be forced to close prematurely, he said: “It depends on the nature of the emissions trading scheme (introduced).”

The purpose of a GHG emissions trading scheme is to mitigate anthropogenic greenhouse gas emissions from our industries. Its purpose is not to raise more government revenues or to create more paperwork – its purpose, its reason for existing, is to reduce industrial, anthropogenic emissions of carbon dioxide.

Therefore, if the “mud-burning” Latrobe Valley stations are not the very first things to close down under an emissions trading scheme, then clearly the scheme is not working.

If it’s one like Garnaut actually recommends – with no compensation to power stations for wiping billions off their value – the generators are cactus. And here is Kevin Rudd’s modus operandi writ large and destructive: process over purpose. What possible good could there be to cause such an economic catastrophe in this state?

But Rudd’s guru has a solution of the kind the Soviet Union would have suggested:

In his report, Professor Garnaut said $1 billion to $2 billion of the emissions trading scheme proceeds should be invested in clean coal technologies, matched dollar for dollar by the companies. If clean coal worked, he said, the Latrobe Valley would heave a “prosperous and expansive future”. If it didn’t, money from the scheme should be used to help retrain workers and to help the valley community survive the brave new world of zero emissions.

Hey, let the Government spend a couple of billion of taxpayers’ money, and another couple of billion of the bosses’, on a yet-to-be proved “solution” many experts say is pie in the sky. And then, $4 billion later, let’s give the unemployed some handouts.

Warning: These people now have their hands all over your jobs and paypackets.

Whilst I’m interested – and many others are interested – in seeing the coal fired plants closed down, that doesn’t mean that the electricity utilities are out of business – we still need the electricity, and we will continue to need the electricity.

Ideally, what we would see happening is the construction of new lower-emissions or zero-emissions electricity generators of an energy output comparable to the coal power plants, followed by the decommissioning of the coal-fired plants. [Of course, we don’t decommission the coal plants until after the new ones are online.]

The electricity utilities are still operating lower-emissions or zero-emissions generators, there are still people employed, and we’re still getting the energy needed to support developed civilisation. This is where we need to transition to, and where an emissions trading scheme – if it’s done right – might help us transition to.

I agree that investing many billions of dollars in CCS research and development, which is considered by many to be pie in the sky, is a grave mistake. Instead, we need to consider the energy generation technologies that are mature technologies that are available and proven right now, that can replace coal-fired power plants, generating energy at a comparable scale, for less GHG emissions.

Those options are large hydroelectricity, natural gas fired turbines, and nuclear fission.

In Australia, expanding the use of large hydroelectric installations above and beyond what we’ve already got is really not a practical proposition, so we’re left with two options that really could replace coal-fired generators in the Latrobe valley, under an emissions trading scheme – natural gas and nuclear energy. Certainly, what is absolutely not sensible at all is arbitrary, unfair and exceptional, scientifically unfounded legal prohibitions on the development of nuclear power plants by the energy companies who are willing to invest in zero-emissions replacement for coal, especially when their investments may be kick started by billions of dollars in the government’s ETS revenue, which clearly needs to be put back into these zero emissions or lower-emissions technologies.

If power plant operators wish to pursue either of these options, which will finally actually put a stop to the ever-expanding use of coal-fired generators, and finally put a real dent in GHG emissions, then they are to be wholeheartedly encouraged in doing so.

Obviously the nuclear energy option is completely superior to natural gas in terms of greenhouse gas emissions – however, in practical terms, one must grant that gas turbines are already in widespread use in Australia today, and they are more politically acceptable in some political circles than nuclear power – however that may change as concern over greenhouse gases, even at the somewhat reduced levels from natural gas generators, grows.

However, that said, given the importance of making real cuts in GHG emissions within the next 3-10 years, if the generators want to build combined-cycle natural gas turbines, technologies with which they’re more familiar, straight away, then they shouldn’t be discouraged. Natural gas could offer some benefit as a stopgap measure for last-ditch replacement for coal fired plants in the absence of nuclear power.

The Garnaut climate change review draft report.

leave a comment »

As many of you will know, Professor Garnaut’s much-awaited Draft Report on the implications of anthropogenic climate change in Australia was recently released. Let’s take a look at it.

[There’s a mirrored host here, courtesy of the GreensBlog. Please be aware that that’s a direct link to a very large PDF file.]

I haven’t read the entire thing yet, and I don’t expect that many of you have, either.

In some industries, notably aluminium smelting and some steel production, indirect emissions in generating electricity would need to be taken into account. These emissions could be assessed according to a simple and robust approximation, based on the emissions intensity of the systems from which they draw their power, and made subject to the sectoral emissions tax. Indirect or embodied emissions that fell below a threshold would not be considered, in the interest of simplicity.”

“Chapter 9 suggested that under a reasonable set of assumptions about the threshold ratio and the permit price, only a limited number of industries might clearly satisfy the emissions intensity eligibility criteria. As the permit price rises, they may include — assuming an economy-wide emissions trading scheme — aluminium smelting, cattle and sheep products, cement production, and iron and early stage steel manufacturing.”

It all sounds terribly complicated, doesn’t it? I’ll be the first to profess that I’m not an economist, however.

The example of the aluminium production industry is one that gets bought up again and again in the context of high-GHG-emissions industries, and it raises an interesting question.

An aluminium smelter itself does emit a little bit of carbon dioxide and other GHGs, but not all that much by comparison to most other large industrial chemical and metallurgical engineering.

What an aluminium smelter does do, however, is consume large amounts of electrical energy, and this is where this notion about the aluminium industry being responsible for vast amounts of GHG emissions comes from.

The aluminium producer buys their electricity from the grid from the electricity generating utility. If we assume that this utility is predominantly operating coal-fired plants, then the utility is paying a high price for its large carbon dioxide emissions, under an emissions trading scheme.

The utility will inevitably pass this cost onto electricity consumers – so, is an industry such as the aluminium industry or steel industry being expected to pay for the carbon dioxide intensity of their energy use twice – once in the price of their electricity, and again simply because they’re using that electricity? That’s what the above passage seems to imply, doesn’t it?

The same scenario applies to every one of us, with regards to household electricity consumption. Could you reasonably be expected to pay for “your” carbon dioxide emissions corresponding, even after you’ve already paid them in the form of the bill from your electric utility?

Just like aluminium smelters or electric arc furnaces in industry, light bulbs or plasma TV’s aren’t responsible for significant direct greenhouse gas emissions – it’s fossil fuel combustion power stations that are.

Now, I’m pleased to note that there’s at least some mention of nuclear energy in the report, and it’s interesting to take a look at that, too.

This renewed demand arises from a combination of influences from climate change, energy security and relative costs. With more than one-third of currently estimated global uranium resources, Australia is well placed to benefit from this growth.

Doesn’t this sound – coincidentally – very much like the “Nuclear energy is fantastic for Australia – just as long as it isn’t actually in Australia” policy of the federal government?

The 2006 Uranium Mining, Processing and Nuclear Energy Review for the Commonwealth Government concluded: ‘Although the priority for Australia will continue to be to reduce carbon dioxide emissions from coal and gas, the Review sees nuclear power as a practical option for part of Australia’s electricity production. This conclusion was based on a cost of nuclear power of $40–65/MWh, which is within the range of the $35–80/MWh estimate of the Nuclear Energy Agency and the International Energy Agency from 2005, but below ranges specified in the more recent official UK publications of $60–80 MWh. Nuclear power stations will have been disproportionately affected by the recent increases in capital costs on account of their exceptional capital intensity, and will have been rendered less competitive by this development. Newer-generation nuclear technologies indicate potentially lower costs.

Less competitive with what? Less competitive in the presence or in the absence of an emissions trading scheme? How less competitive?

Increases in capital costs affect all energy systems – nuclear energy, fossil fuel combustion, solar, wind… you name it. In terms of the relative sensitivity to capital costs of nuclear power plant construction for a given amount of energy generated, nuclear energy is indeed quite competitive.

“Australia has better non-nuclear low-emissions options than other developed countries, especially (but not only) if carbon capture and storage is commercialised within the range of current cost expectations. Australia is a major net exporter of a wide range of energy sources, notably coal, liquefied natural gas and uranium. Transport economics should favour local use of those fuels in which the gap between export parity and import parity price is greatest (first liquefied natural gas, then coal). As a consequence, Australia is not the logical first home of new nuclear capacity on economic grounds.”

This sounds like the oft-encountered yet worrisome “fossil fuel combustion is the cheapest source of energy – so just use that instead, without bothering with those more expensive sustainable low or no emissions alternatives” reasoning.

Is that perhaps what we have to expect when we put economists in charge of preparing a review for the government of the impacts of anthropogenic greenhouse effect forcing in Australia?

Without real attention paid to the environmental impacts of fossil fuel combustion, the health impacts, and the energy security impacts, no energy system is competitive with cheap, abundant coal and petroleum on economic grounds.

“In Australia, as well as in most other developed and developing countries, public acceptability is an important barrier, that would need to be recognised as a constraint and a source of delays and increased costs by any government committed to implementation of a nuclear power program.”

“Given the economic issues and community disquiet about establishing a domestic nuclear power capacity, Australia would be best served by continuing to export its uranium and focusing on low-emissions coal, gas and renewable options for domestic energy supply. However, it would be wise to reconsider the constraints if:

• future nuclear costs come in at the low end of the estimates provided above
• developments in technologies reduce the need for long-term storage of high level radioactive waste
• there is disappointment with technical and commercial progress with low emissions fossil fuel technologies, and
• community disquiet eases.”

Many who support nuclear power already believe that the failure of fossil fuel combustion with CCS technology to deliver truly competitive and truly low-emissions energy is a foregone conclusion for the next several decades at least.

As for dealing with used nuclear fuel and high level radioactive waste efficiently, sensibly and safely, the efficient recycling of nuclear fuels and the deep geological permanent disposal of unusable long-lived radioactive wastes are already scientifically and technologically solved problems – only political debate remains as the “unsolved problem”

Ongoing developments in the design and construction of Generation III, III+ and IV are working to address concerns over the economics of nuclear power, as do rising natural gas and fossil fuel prices. The introduction of GHG emissions trading schemes increases the economic acceptability of nuclear energy still further, relative to other energy systems. It is always essential to approach these issues in the context of meaningful comparisons to other forms of energy generation – or realistic degrees of reduction in demand, or the slowing of demand growth. The energy, ultimately, has to come from somewhere.

This leaves public acceptance of nuclear power – supposedly – as the overwhelming issue preventing nuclear energy use within Australia.

Does this supposed community disquiet truly exist to a significant degree, or is it merely the meaningless noise of a vocal, fervent and dogmatic minority?

Acceptance of nuclear energy amongst the public may be swayed by dramatically increased energy costs, and failures to achieve desired reductions in GHG emissions, if real alternatives to coal and fossil fuels are not deployed in a meaningful way.

The 2007 McNair Gallup poll found 53% of Australians were opposed, 41% were in favour of the construction of Nuclear power plants and 6% were uncommitted.

It seems from the 2007 McNair Gallup poll that the need to consider nuclear power as an alternative energy source is considered increasingly popular amongst Australians, with more Australians conceding the need for nuclear power plants to be built in Australia.

The 2007 results contradict Peter Garrett’s claim that “Australians are very clear that they don’t want nuclear energy and nuclear power in this country.”, with 41% of Australians in favour for the construction of nuclear power plants.

Other informal polls, such as those run on the websites of Australia’s major newspapers every once in a while, continually return strong majority support for nuclear power. Some may question the reliability and coverage of such polls – but it is clear that as concern over anthropogenic greenhouse forcing and the use of coal grows, along with concerns of the economic impacts of GHG emissions trading and the need for large scale energy generation also grows, more effort needs to be made to gauge the true degree of community support for a rational, informed and sensible consideration of nuclear energy – along with greater education of the public, which is increasingly desired by the community.

In fact, I am not unconvinced that there is not already majority support for a rational, informed, dogma-free and sensible consideration of nuclear energy amongst the Australian public today.

Not-really-clean-coal for Victoria.

with 6 comments

Just two days before the Garnaut report on climate change is handed down, the Victorian Government has given the go-ahead to a new brown-coal power station in Latrobe Valley.

Environmental campaigners said it was “complete madness” to approve the $750 million plant, but the Government said the station would use new technology that would slash greenhouse gas emissions.

The project is a joint venture between consortium HRL and Chinese power giant Harbin Power, and will receive funding of $100 million from the Federal Government and $50 million from the Victorian Government.

“The $750 million HRL plant will use technology which has been developed right here in Victoria and is part of the new generation of clean coal power stations designed to slash greenhouse gas emissions,” said the Energy Minister, Peter Batchelor.

“The project uses a process called integrated drying gasification combined cycle (IDGCC) which can reduce emissions of CO2 from brown coal-fired power generation by 30 per cent and reduce water consumption by 50 per cent, compared to current best practice for brown coal power generation in the Latrobe Valley.”

Robert over at Larvatus Prodeo actually reported on this at length last year, when the project was first announced, and there’s a good body of details of the project and discussion to refer to there.

Typical generators burning Victorian brown coal generate 1175 g CO2e per kWh of electricity generated.

The IDGCC plant will reduce carbon dioxide emissions by 30% – so, that’s about 823 g CO2e/kWh.

For a good supercritical black coal burning plant you’ve got about 863 gCO2e, and 751 g for natural gas, or 577 g for combined cycle natural gas – which is about the absolute lowest you’ll get for a fossil fuel.

The carbon dioxide emissions are still high as all hell. It’s basically the same as a black coal fired power plant – in absolutely no way is it low in greenhouse gas emissions. All that the IDGCC technology is really accomplishing is to turn a plant powered by brown coal – the most especially inefficient and carbon dioxide intensive form of coal – into the emissions equivalent of a more conventional black coal fired plant. Make no mistake – the entirety of that dangerous fossil fuel waste is being discharged straight into the environment, as per business as usual.

But there’s one aspect to this which I find interesting, in particular.

This plant is slated to cost 750 million (Australian) dollars, and will have a nameplate capacity of 400 MW.
That is; $1875 per kilowatt of nameplate capacity.

The US nuclear energy industry is aiming to build new nuclear power plants for a cost of $1500 to $2000 per kW capacity.

The General Electric ABWR was the first third generation power plant approved. The first two ABWR’s were commissioned in Japan in 1996 and 1997. These took just over 3 years to construct and were completed on budget. Their construction costs were around $2000 per KW.

Westinghouse claims that the AP1000 power reactor will cost $1400 per KW for the first reactor and fall to as low as $1000 per KW for subsequent reactors.

I don’t know what kind of capacity factor is to be expected from an IDGCC plant – but at best, it’s comparable to that of nuclear power. If the capacity factor is significantly less, then this decreases the economic competitiveness of the coal plant relative to nuclear power still further.

We’re looking at the construction of a coal-fired power station that is not mitigating its carbon dioxide emissions in any meaningful way, emitting about 823 g CO2e/kWh straight into the atmosphere, along with all kinds of other dangerous coal byproducts, where the construction of a new nuclear power plant is already likely to be directly competitive, if not superior, on construction cost terms, even in the absence of any kind of emissions trading scheme, carbon dioxide ‘price’, carbon dioxide capture and storage or carbon dioxide sequestration.

What’s up with that?

Written by Luke Weston

July 3, 2008 at 4:52 am

Rudd rejects Labor nuclear push

with 3 comments

Rudd rejects Labor nuclear push

THE Rudd Government has flatly rejected calls from an influential unionist and the former Labor premier Bob Carr to embrace a nuclear power industry as it grapples with how to cut carbon emissions.

Kevin Rudd told ABC radio this morning the nuclear option was not needed.

And in a short media conference, Treasurer Wayne Swan, when asked about the renewed nuclear push answed: “No, a capital N-O.”

The issue was reignited after The Australian reported this morning that Australian Workers Union boss Paul Howes and Mr Carr had called on the Government to purge its prejudices and embrace a nuclear power industry.

Their advocacy came at the annual Australian-American Leadership Dialogue in Washington after a debate on climate change.

“If we are going to be a green Labor Government, then we have to look at nuclear,” Mr Howes told The Australian.

“If we don’t start today, we are going to put ourselves in a very precarious position in 10, 15 or 20 years time.”

“I’ve told ministers in the Rudd Government this is my view and the view of my union. I can’t tell you how concerned I am about this. It’s the greatest challenge the union movement has faced since trade liberalisation in the 1980s, if not greater.

“The only option for us, in my view, is nuclear. If we are going to reduce our carbon output and still want to have heavy industry then we have to look at renewable and new sources of energy – and that means nuclear.”

Mr Carr described nuclear power as the critical bridge between the carbon era and energy from renewable sources.

“There is no other bridging technology to get us from this catastrophic burning of coal and oil into the era of cheap and infinite renewable power,” the former NSW Labor premier said.

“We all want to get there. But it’s decades off and we need a bridge. The best the Western world can do to stop the melting of the polar icecaps is to sponsor the production of the most modern nuclear power plants.”

But the Prime Minister said today: “We believe that we have a full range of energy options available to Australia beyond nuclear through which we can respond to the climate change challenge, and we’re confident we can do that,” he said.

Mr Rudd also reiterated that the coal industry must remain part of a long-term solution and that clean coal technologies must be further developed, but he was optimistic about its future.

“What the nation needs to set for itself and the world is a goal to bring about the commercial application and scale of clean-coal technologies,” he said.

The climate change issue will continue to dominate the political agenda over the next week, with the Government’s climate change expert Ross Garnaut to release his interim report next Friday.

A Government green paper is to follow.

As the Government moved to dismiss the nuclear option, Mr Howes continued his push.

“In the UK, there’s going to be the expansion of nuclear facilities there,” he told Fairfax radio today.

“France now has 80 per cent of its power generated from nuclear, all as short solutions, that is 20 to 50 year solutions until other technologies, such as fusion and hot rock, … are developed and are widely available as baseload power.”

Nuclear power would always be a sensitive issue, he said.

“But we have 40 per cent of the world’s uranium in Australia.

“Labor has overturned the three mines policy and I think it’s now a time for another healthy, sensible and rational debate about this issue without falling back to alarmist sentiments.”

Rudd’s and Labor’s position on nuclear power is based completely on ideology and dogma, in the absence of any evidence. What is their scientifically, factually motivated argument against nuclear energy?

If we “have a full range of energy options available to Australia beyond nuclear through which we can respond to the climate change challenge” then what the hell are they, actually?

Rudd can either put up or shut up. Meanwhile, no impact is being made in the use of coal at all.

So, what are these magical options that Rudd has up his sleeve? How mature are the technologies? How much energy do they generate, how easily can they be scaled up, how much do they cost when scaled up to replace coal plants, and how much carbon dioxide and other forms of pollution do they emit – and why aren’t we using them to replace coal fired power stations right now, without the bullshit?

If there’s some magical thing that Rudd is sitting on that is superior to nuclear energy – which there isn’t – then let’s see it. I’m calling him out on it, right now. Since no superior option exists for replacing coal-fired power stations, nuclear energy is what is needed.

Even the AWU realises that burning coal in this way is completely unsustainable – why does the Rudd government insist on remaining committed to coal?

If we check out The Australian’s poll we see – once again – that a clear majority of Australians think the same way.

Written by Luke Weston

June 27, 2008 at 11:37 am

Interesting posts roundup.

leave a comment »

A few interesting pieces from the blogosphere over the last week or so:

Fellow Melbourne based blogger Robert Merkel is discussing some, well, nuclear power stuff over at Larvatus Prodeo.

Tim Dunlop’s Blogocracy blog (affiliated with ) is taking a look at Thorium as a nuclear fuel. It’s good to see some level headed discussion of nuclear energy systems in such a popular media outlet.

Finally, Sovietologist is taking a look at Russia’s proven nuclear “micropower”. I wonder what Lovins has to say about that?

Written by Luke Weston

June 22, 2008 at 6:55 am