Physical Insights

An independent scientist’s observations on society, technology, energy, science and the environment. “Modern science has been a voyage into the unknown, with a lesson in humility waiting at every stop. Many passengers would rather have stayed home.” – Carl Sagan

Thermodynamics, stars, uranium, life and everything: Part II

with one comment

The amount of time necessary to exhaust nuclear energy provided by existing uranium deposits, unused energy in current reserves of used radioactive “waste”, heat produced by the radioactive decay of uranium, thorium and potassium deep inside the Earth (in other words, geothermal energy), and uranium in seawater could indeed last billions of years – approaching the evolution of the sun off the main sequence, and with that, the end of life on this world.

If the energy from the Sun is “renewable”, so too is nuclear energy equally every bit as renewable.

The concentration of uranium in seawater in the world ocean is about 3.3 parts per billion. The total mass of Earth’s hydrosphere is about 1.4×1021 kilograms, therefore putting the total mass of uranium in the world ocean at 4.62 billion tonnes.

Current total world demand for electricity stands at 16,330 TWh per year. Let’s conservatively suppose that, over the millennia to come, the average total world demand for electricity is four times what it is at present, or 65,320 TWh. Conventional LEU fueled light-water reactors and inefficient once-through fuel use in these reactors consume about 200 tonnes of uranium mined per gigawatt-year of electric power generation.

Hence, if we make the assumption that all the nuclear energy generation over these coming millenia is performed with this inefficient once-though LEU fuel chain and no recycling or reprocessing of nuclear fuels is performed, then the world demand for uranium can be expected to be 1.49 million tonnes per year.

Hence, consuming 1.49 million tonnes of uranium per year to supply all the world’s electricity, the 4.62 billion tonnes of uranium presently dissolved in the ocean will supply the world’s electricity for 3100 years.

\mathrm{\frac{4.62 \times 10^{9}\ tonnes}{(200\ tonnes\ per\ GW\cdot year) \cdot (65320\ TWh/year)}\ =\ 3100\ years}

Here we have assumed that no use is made of efficient, advanced reactors or breeder reactors and no use is made of the excess “depleted” uranium-238 or natural thorium, no deuterium is used for nuclear fusion, and no uranium is mined on land. Such assumptions are of course ridiculous, but let’s just be as conservative as possible, for argument’s sake for the purposes of this baseline, worst-case scenario.

If we considered a truly efficient efficient use of nuclear fuel, we may consider an efficient, advanced reactor such as a molten-salt reactor, efficiently transmuting uranium-238 into plutonium-239 in situ to generate energy. We may assume that 200 MeV of energy is released per fission event, and that the efficiency of the 238U transmutation and liberation of useful energy output from these nuclear processes within the reactor is, say, 75% overall. If we assume that this thermal energy is converted in a Brayton-cycle power plant with a thermodynamic efficiency of 50%, then hence we know the amount of natural uranium required to fuel the reactor.

\mathrm{\frac{1\ GW\ \cdot\ 1\ year\ \cdot\ 238\ u\ \cdot\ 1.66 \times 10^{-24}\ grams/u}{200\ MeV\ \cdot\ 75\% \cdot\ 50\%}\ =\ 1.04\ tonnes}

Just over one tonne of natural uranium is required, to generate one gigawatt-year of energy. (That number is basically the same if we’re looking at efficiently burning thorium in a MSR, incidentally, also.) If we utilised nuclear energy efficiently, like this, then the 4.62 billion tonnes of uranium presently dissolved in the ocean would supply the energy we discussed above, 65,320 TWh, for (just under) an astonishing 600,000 years!

\mathrm{\frac{4.62 \times 10^{9}\ tonnes}{(1.038\ tonnes\ per\ GW\cdot year) \cdot (65320\ TWh/year)}\ =\ 597,558\ years}

However, we are not finished yet. Elution of the uranium in the Earth’s crust into the ocean occurs on an ongoing basis, adding 3.24×104 tonnes of uranium to the ocean annually.

It was motivated by Cohen* that we could recover uranium from seawater at perhaps half of that rate; 16,000 tonnes of uranium from seawater per year. This quantity of uranium would supply 15.4 TW of electric power, if used efficiently as outlined above. In order to supply 65,320 TWh of electricity per year, four times the current worldwide demand for electricity, we only require 7750 tonnes of uranium per year, less than half that figure of 16,000 tonnes.

[* Many of you will be familiar with Cohen’s work, but if you are not, that book is highly recommended.]

Cohen argues that given the geophysical cycles of erosion, subduction and uplift, the uranium elution into the oceans would last for five billion years, at a rate of withdrawal of 6500 tonnes per year. At a rate of consumption of 7750 tonnes per year, in the absence of the use of any uranium and thorium mined on the crust, or the use of deuterium for nuclear fusion, the uranium from the oceans alone can be expected to meet world demand for electricity, at 65,320 TWh of electricity per year, for 4.2 billion years. Over a timeframe on the order of 109 years, of course, some non-trivial fraction will be lost, simply due to radioactive decay – however, at the same time, we have not even begun to consider the use of uranium and thorium reserves in the crust, or the use of the vast supply of deuterium as an energy source.

Clearly nuclear energy remains a viable resource on the Earth for a time scale of approximately five billion years – these nuclear fuels will not be consumed or depleted over a timeframe comparable to the life of the sun on the main sequence. Just as the finite hydrogen within the core of the Sun is a “renewable” energy resource, so too is the finite resource of terrestrial nuclear energy an equally renewable energy resource.

However, there is one final point we have overlooked. Even during its life in the main sequence, the Sun is evolving, as with all such stars. The Sun is gradually increasing in luminosity, by about 10% every one billion years, and its surface temperature is correspondingly slowly rising. This increase in the luminosity of the sun is such that in about one billion years, the surface temperature of the Earth will permanently have become too high for liquid water to exist, the oceans will evaporate and a catastrophe of the most immense proportions imaginable will overtake our planet. The Aztecs foretold a time `when the Earth has become tired… when the seed of Earth has ended’. All life on Earth will be extinguished, billions of years before all the nuclear fuels will be depleted.

In the meantime, our descendants will have evolved into something quite different, as far divergent from us in evolutionary terms as we are from the simplest one-celled organisms to have existed on the Earth. If they still inhabit the Earth, our descendants will leave, perhaps to Mars, or to the moons of the gas giants, Europa, perhaps, rich in water and perhaps not dissimilar to Earth if warmed up a little, or perhaps to a younger, more distant world, orbiting a younger star, around which their civilization will flourish once more.

Written by Luke Weston

October 12, 2008 at 1:12 pm

One Response

Subscribe to comments with RSS.

  1. Excellent posts! Keep up the good work,

    Charles Barton

    October 13, 2008 at 1:21 pm


Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: